ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle Accident Recordings

Huijia Sun¹, Christopher M. Poskitt², Yang Sun², Jun Sun², Yuqi Chen¹

> ¹ShanghaiTech University ²Singapore Management University

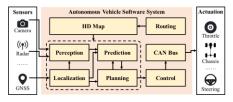
Autonomous Vehicle (AV)

The Self-Driving Car Companies Going The Distance

Number of autonomous test miles and miles per disengagement (Dec 2019-Nov 2020)*

* Cases where a car's software detects a failure or a driver perceived a failure, resulting in control being seized by the driver. Source: DMV California, via The Last Driver License Holder

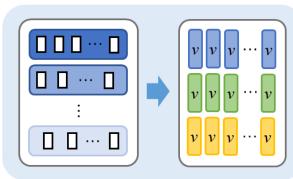
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

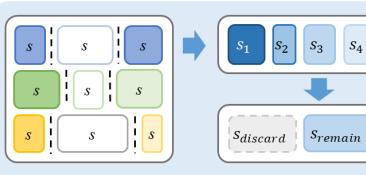

https://www.statista.com/chart/17144/test-miles-and-reportable-miles-per-disengagement/

Causality Analysis of AV Accidents

Autonomous Driving Crashes

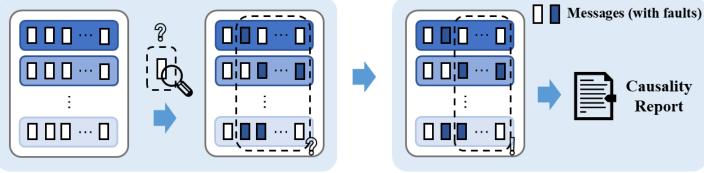
Use a recorder to obtain recordings


Vast amounts of driving recordings



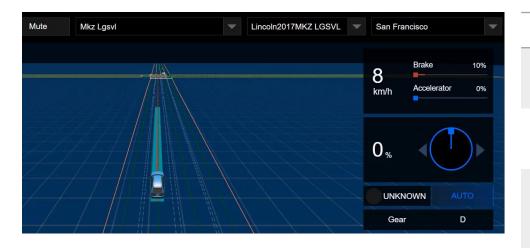
Overview of ACAV

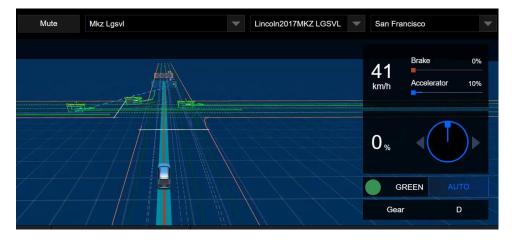
The First Stage: Accident Recording Simplification


Recording Alignment and Vectorization

 S_4

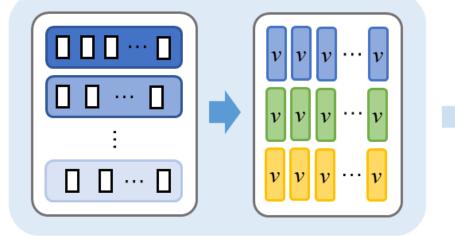
Segmenting and Pruning


The Second Stage: Causality Analysis



Potential Safety-Critical Frame Identification

Motivating Example

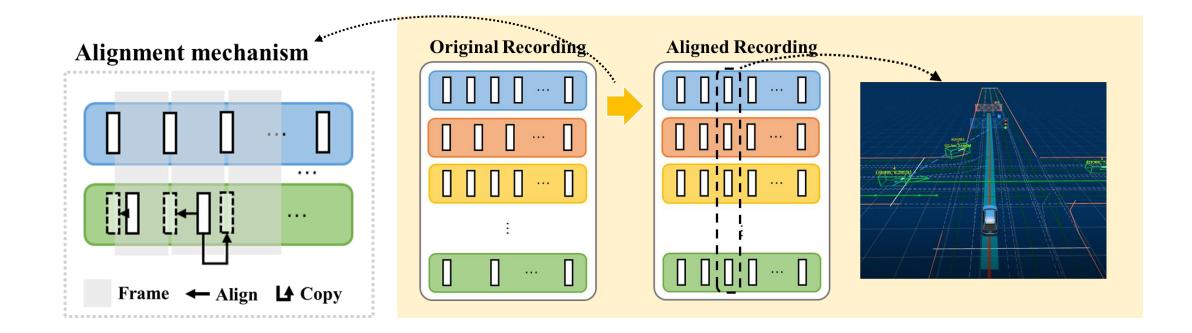


Time	Accident causal events	Details
0s	AV keeps safe distance from NPCs	
0.4s	Wrong motion planning; AV skidding sometimes	Too fast or too slow planning speed
0.8s	Wrong planning caused by the wrong prediction; AV skidding sometimes	For NPC 2: wrong priority prediction; For NPC 4: improper 'overtake' decision; Too fast or too slow planning speed
2.6s	Wrong motion planning; AV skidding sometimes	Too fast or too slow planning speed
4.3s	Accident!	

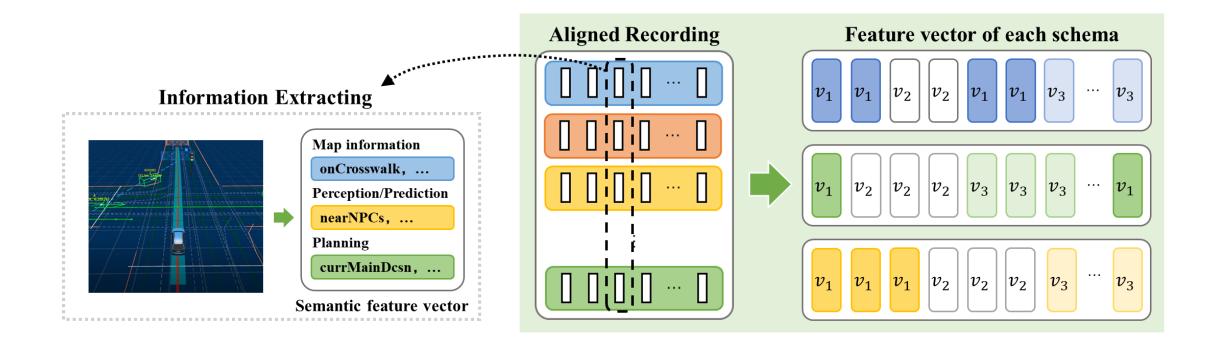
ACAV https://acav2023.github.io/merging1.html

ACAV Framework: Stage #1

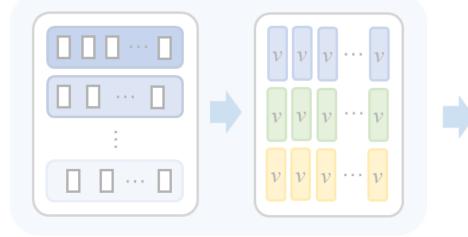
The First Stage: Accident Recording Simplification


Recording Alignment and Vectorization

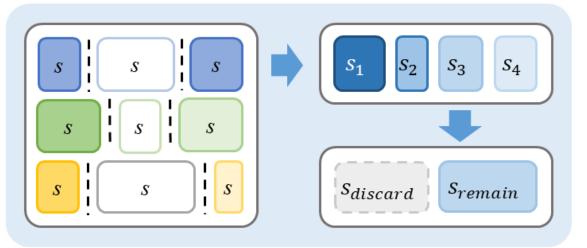
Segmenting and Pruning


Stage #1: Alignment and Vectorization

- Consider five channels: map, localization, perception, prediction, planning.
- Divide the recording into a list of frames.


Stage #1: Alignment and Vectorization

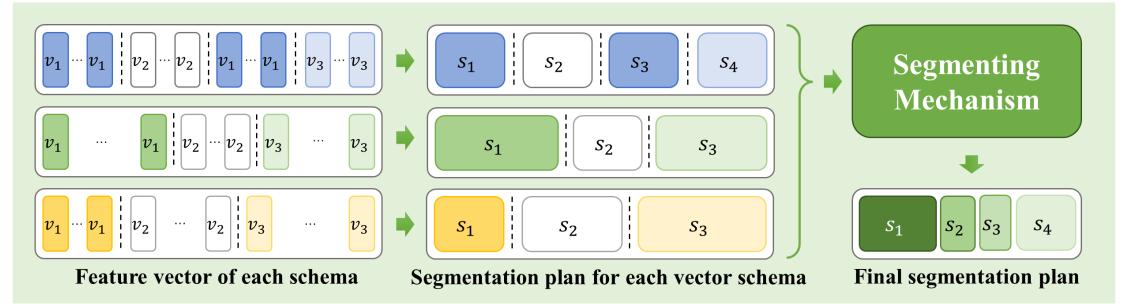
• Extract semantic information according to three feature extraction schemas.



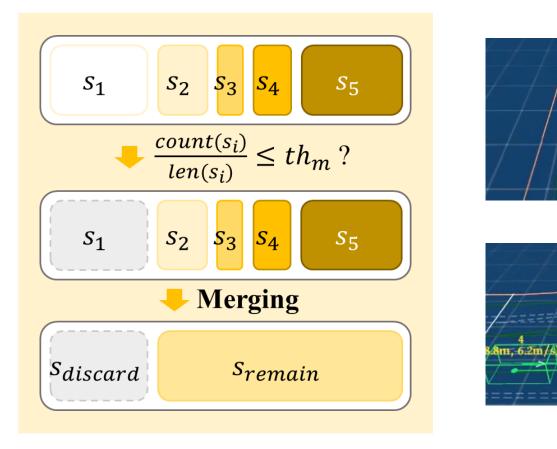
ACAV Framework: Stage #1

The First Stage: Accident Recording Simplification

Recording Alignment and Vectorization



Segmenting and Pruning

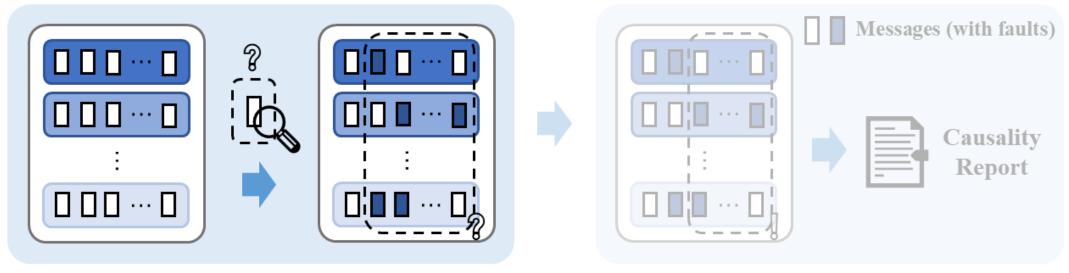

Stage #1: Segmenting and Pruning

• Segmenting Mechanism:

$$voting(v_{map}, v_{perc}, v_{pred}) \coloneqq \sum_{c \in C} w_c \times v_c \ge \frac{1}{2} \sum_{c \in C} w_c, \qquad C = \{map, perc, pred\}$$

Stage #1: Segmenting and Pruning

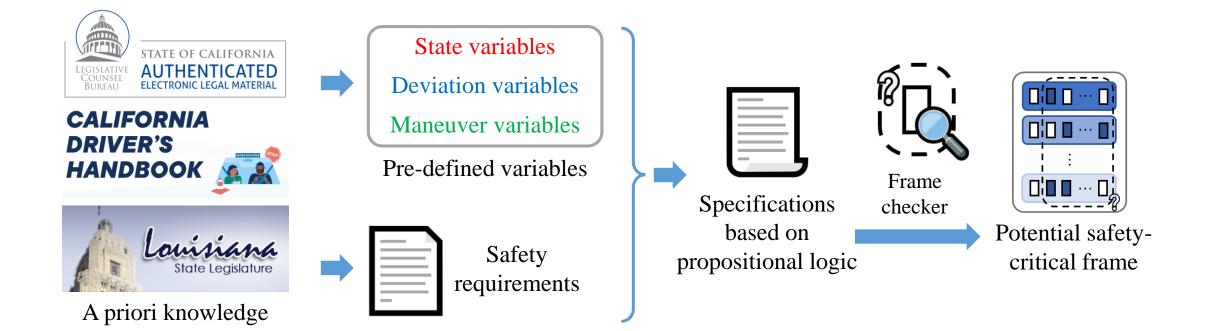
Irrelevant Frame: Road Area Not near a stop sign No NPCs


Relevant Frame:

- Junction/Crosswalk area
- Near NPCs
- Interact with NPCs

count(S): compute the irrelevant frame ratio for a segment S

ACAV Framework: Stage #2


The Second Stage: Causality Analysis

Potential Safety-Critical Frame Identification

Causal Events Deduction

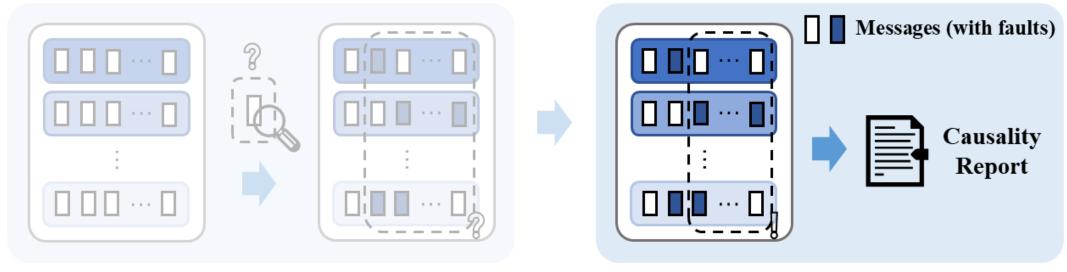
Stage #2: Potential Frame Identification

Stage #2: Potential Frame Identification


• Example

Navigating the Roads (Section 9, Navigating the Roads, California Driver's Handbook):

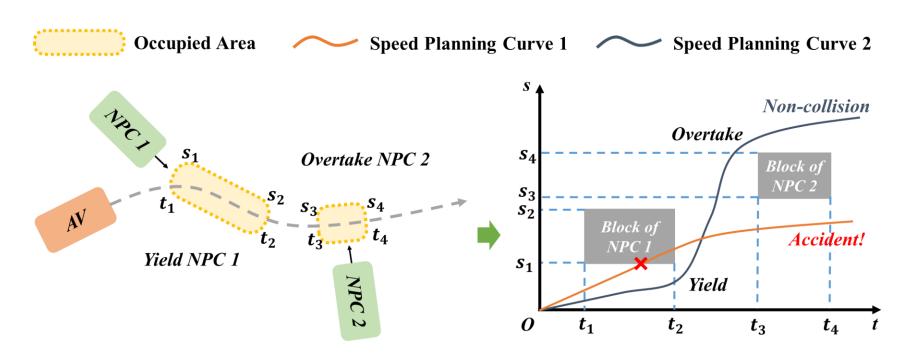
Before you pass, look ahead for road conditions and traffic that could cause other vehicles to move into your lane. Only pass when it is safe. Do not pass:


- Within 100 feet of or in an intersection, bridge, tunnel, railroad crossing, or other hazardous area.
- At crossroads and driveways.

ImpropOvtkDecn(x):= (av.onJct ∨ av.OnCswk) ∧ DecnOvtk(x)

ACAV Framework: Stage #2

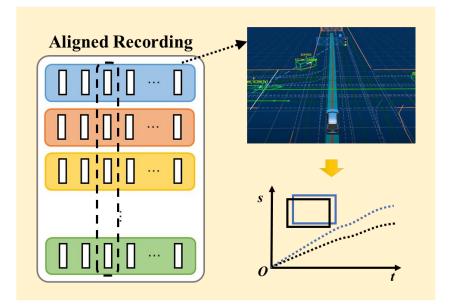
The Second Stage: Causality Analysis

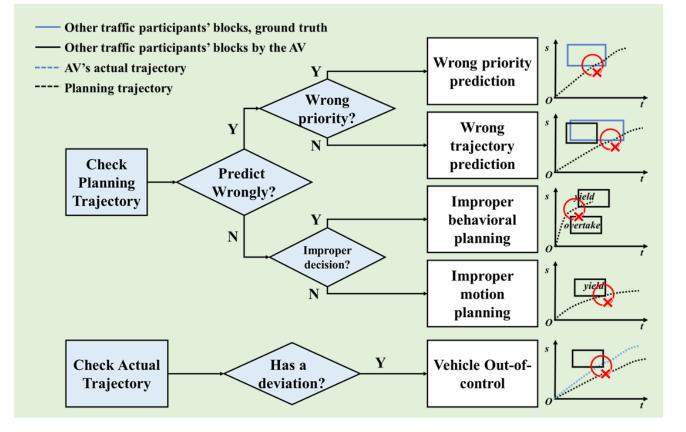

Potential Safety-Critical Frame Identification

Causal Events Deduction

Stage #2: Causal Events Deduction

For a vehicle: motions = longitudinal motions + lateral motions

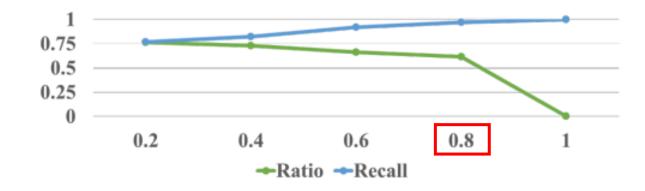

Depicting the AV's longitudinal planning states with Station-Time graph (ST graph)



Stage #2: Causal Events Deduction

• **Restore ST graph** + Causality Analysis Tool (CAT)

CAT compare and analyze the ST graph from the AV perspective against the ground truth, frame by frame.



Evaluation

RQ1: Which combination of weights for feature vector categories and which threshold in the "segmenting and pruning" phase is the most **effective**?

Weight Ratio (map:perc:pln)	1:1:0	1:0:1	0:1:1	1:1:1	2:1:1	1:2:1	1:1:2
Ratio	74.64%	96.43%	74.64%	50.03 %	60.26%	74.64%	62.23%
Recall	79.62%	11:06%	79.62%	93.01%	89.19%	79.62%	94.41%

Evaluation

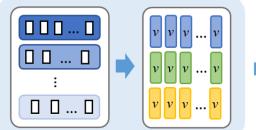
RQ2: Does the ACAV effectively simplify accident recording compared to other approaches?RQ3: How many different causal events can the causality analysis of ACAV automatically identify?

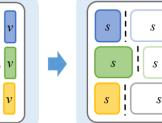
	ACAV	STRaP	Length: 4s	Length: 8s	Length: 12s	Length: 16s
Ratio	62.23%	60.57%	76.74%	54.40%	32.64%	16.29%
Recall	94.41%	30.81%	72.26%	82.92%	86.85%	91.35%

	Priority Trajectory Behavioral Mo		Wrong Motion Planning	Vehicle Out-of-control	
Total	26	51	17	67	103
Intersection	0	0	6	27	39
Merging	20	27	4	23	30
Tailgating	6	24	7	17	34

Evaluation

RQ4: To what extent can the ACAV **accurately** identify causal events?

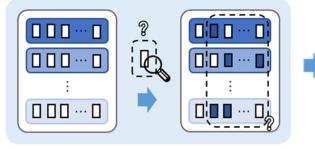

Location	Prediction Module			Planning Module						
Fault Types	F1	F2	Total	F3	F4	F5	F6	F7	F8	Total
Numbers	155	126	281	132	146	202	166	145	134	925
Precision (%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Recall (%)	100.00	90.00	95.97	87.61	73.98	89.70	86.72	77.19	77.19	82.56
Accuracy (%)	100.00	92.06	96.44	89.39	78.08	91.58	89.76	82.07	80.60	85.73


Fault Type	Location	Description
F1	AssignIgnoreLevel()@obstacle_prioritizer.cc	Assign 'ignore' priority to all the detected NPCs by default.
F2	<pre>PredictObstacle()@predictor_manager.cc</pre>	Assign improper trajectory prediction models to NPCs to get erroneous trajectory prediction.
F3	<pre>MakeStaticObstacleDecision()@path_decider.cc</pre>	Make 'ignore' decisions to all the static NPCs near the AV's planned trajectory.
F4	MakeObjectDecision()@speed_decider.cc	Make 'follow' decisions to any NPCs in front of the AV which tend to stop, instead of 'stop' decisions or changing lanes.
F5	MakeObjectDecision()@speed_decider.cc	Make 'ignore' decisions to an NPC ahead of the AV, if the AV is not following or keeping distance from it.
F6	MakeObjectDecision()@speed_decider.cc	Make 'yield' decisions to a high-speed NPC accelerating ahead of the AV, which leads to AV's low speed in a fast lane.
F7	MakeObjectDecision()@speed_decider.cc	Make 'overtake' decisions to any NPC if it is near the AV.
F8	<pre>GetSpeedLimits()@speed_limit_decider.cc</pre>	Keep a high speed even being close to NPCs.

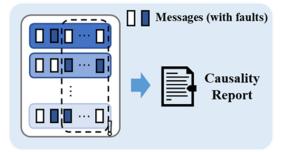
Conclusion

- ACAV, an automated framework for determining the causal events in AV accidents
- Implementation ACAV in both Apollo and Autoware.universe
- Causal events identification in 103 of 110 accident recordings

The First Stage: Accident Recording Simplification


Recording Alignment and Vectorization

Segmenting and Pruning


S

1 <u>s</u>

The Second Stage: Causality Analysis

Potential Safety-Critical Frame Identification

*s*₂

S_{discard}

Sremain

Causal Events Deduction

Main Contributions:

- A mechanism for identifying recording segments related to the accident
- A tool for identifying safety-critical frames by leveraging ST graphs
- The first framework for AV accident analysis and explanation

Thank You for Listening!